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Abstract— Construction robots require autonomy in diverse
environments to navigate and map their surroundings ef-
ficiently. However, the lack of diverse and comprehensive
datasets hinders the evaluation and development of autonomous
construction robots. To address this challenge, we present
a multi-modal and diverse terrain dataset for the ground
mapping of construction robots. The dataset includes various
terrain types, such as sandy roads, vegetation, and slop-
ing terrain. It comprises RGB-D cameras, thermal camera,
light detection and ranging (LiDAR), inertial measurement
unit (IMU), and global positioning system (GPS). We uti-
lize a quadrupedal robot as a base platform to collect the
dataset. The dataset and supplement materials are available
at https://sites.google.com/inha.edu/diter/
datasets.

I. INTRODUCTION

In robot navigation, the characteristic of the terrain is
essential since it greatly affects the safety and performance
of robots. For example, if the ground is slippery, the robot’s
wheels or feet may become unstable, causing the robot to
roll. Also, if the ground is sloped or has large differences in
elevation, the robot may fall. In such hazardous situations,
traversability estimation plays an important role in keeping
the robot safe during navigation. Traversability is a concept
that takes attributes of terrain nearby such as roughness and
slope into account and then converts them into a binary value
or probability score which indicates the robot can go or not
even in an unstructured environment.

Unlike well-structured environments like paved roads,
constructed and unstructured sites may include uneven terrain
that threatened the platform. Although there are several
datasets for rugged terrain environments [1], [2], we expect
the need for supplementary ground-level data to robustly
derive the traversability. To this end, the RGB-D camera in
our experiment is deposited to face ground to solely contain
information about nearby terrain. We deploy a quadrupedal
robot to collect diverse terrain scenarios.

The main contributions of this paper are as follows:
• We propose a dataset that traverses multi terrain in-

cluded HILL01, HILL02, FOREST, LAWN.
• The dataset is collected by multiple perceptual sensors

including RGB-D, thermal camera, RGB, and LiDAR.
• The dataset contains motion measurements including

IMU, GPS, and odometry of a quadrupedal robot.
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Fig. 1. Illustration of test environments and ground mapping results:
HILL01, HILL02, FOREST, LAWN. (Top) The first row represents the
environment of our dataset’s sequence. (Middle) The second row is the
accumulated depth camera’s pointcloud along the trajectories from conven-
tional LiDAR SLAM [3]. HILL02’s pointcloud has lots of vacancies since
the tall grass obscures the camera. (Bottom) The third row shows graphs
that represent the roll and pitch in angular velocities [rad/s] from the IMU.

II. RELATED WORKS

In this section, we describe various terrain datasets and
related research. In recent years, many datasets have become
available online and are actively studied. However, most of
the papers focus on urban environments, and the available
datasets for field environments generally include single or
similar terrains. In reality, various terrains with different
properties coexist, such as paved and unpaved roads.

The urban environment is structurally simple and can
assume a variety of settings, and traversability can be easily
assessed or determined due to well-structured environments
and man-made rules. However, challenges still exist, such
as different characteristics among cities or GPS signal ob-
struction around high buildings. Many datasets have been
developed for urban environments, including complex urban
scenes [7] and multi-modal datasets for urban place recog-
nition [8]. On the other hand, field environments can be
more complex and diverse, as they often contain various
terrain types and natural obstacles. While there are some
datasets for field environments, most of them include single
or similar terrains. Additionally, construction sites often
include a combination of both urban and field environments.



TABLE I
COMPARISON OF PUBLIC DATASETS IN VARIOUS FIELDS

Motion Environments RGB-D for Ground RGB Thermal LiDAR GPS IMU

RUGD [1] Wheel Robot Offroad x ✓ x ✓ ✓ ✓

Rellis-3D [2] Wheel Robot Offroad x ✓ x ✓ ✓ ✓

SubT [4] Wheel Robot Underground x ✓ ✓ ✓ x ✓

Wild-Places [5] Handheld Jungle x ✓ x ✓ x ✓

Hilti [6] Handheld In- / Outdoor x ✓ x ✓ x ✓

Ours Quadrupedal Robot Diverse Terrain ✓ ✓ ✓ ✓ ✓ ✓

In an environment that lacks clear rules, guidelines, or
organization, there may be insufficient prescribed routines,
explicit instructions, or established patterns of behavior.
Wigness et al. [1] proposed pixel-wise semantic labeling
datasets in off-road autonomous visual navigation. The
datasets supported fine-grained terrain identification for path
planning tasks. Because the RUGD dataset focuses on visual
navigation, there is LiDAR Data, but it does not have point-
wise labeling. To compensate for this, Jiang et al. [2] sug-
gests a dataset that includes both semantic labels for visual
navigation and pointcloud semantic labeling for LiDAR-
based navigation. Using 3D information, they can recognize
objects that cannot be found only in 2D, however, abstract
information such as traversable/non-traversable cannot in-
clude. Recently, Knights et al. [5] introduced Wild-Places
Datasets, a challenging large-scale dataset for LiDAR place
recognition in unstructured, natural environments. Likewise,
the Hilti SLAM challenge [6] and Sub-T challenge [4] have
been held annually and contribute by providing datasets for
various terrain.

However, for safe navigation, direct information on the
ground in front of the robot is needed to determine the
traversability. Also, information to overcome dark environ-
ments such as caves and nights cannot be ignored. Therefore,
unlike other datasets as represented in Table I, we directly
grasp the information about the ground through RGB-D
Camera and use a thermal camera to secure robustness in
dark places and plan for future work. We also utilize a
quadrupedal robot to provide data on environments where
wheeled robots are difficult to navigate.

III. SENSOR SETUP AND CALIBRATION

A. Sensor setup

Fig. 2 represents the robot platform and compact sensor
configuration. Sensor specifications and each rostopic are
configured as Table II. To capture visual measurements with
different wavelengths, the RGB and thermal cameras are
placed to form a forward-looking sensor system. The terrain-
looking sensor system uses an RGB-D camera to obtain
sufficient ground information. In addition, LiDAR enables
the recognition of the surrounding environment regardless
of angle. Finally, GPS, IMU, and built-in odometry are
responsible for the robot’s Navigation.

RGB
Thermal

Depth

GPS

LiDAR

IMU

25°

Fig. 2. Robot and sensors used in DiTer Dataset

TABLE II
SENSOR SPECIFICATIONS AND ROSTOPIC NAME

Hardware Sensors Specifications Topic name

Intel NUC

RGB-D for Ground Intel Realsense D435i

/cam 1/depth/color/points

/cam 1/depth/camera info

/cam 1/color/image raw

/cam 1/color/camera info

RGB Intel Realsense D435i
/cam 2/color/image raw

/cam 2/color/camera info

16bit−Thermal FLIR Boson 640
/flir boson/image raw

/flir boson/camera info

LiDAR Ouster OS1-32 /ouster/points

GPS Ublox C099-F9P with ANN-MB antenna /ublox gps/fix/

9DOF−IMU LORD Microstrain 3DM-GX5-25 /gx5/imu/data

Unitree-GO1 6DOF−IMU Built in Quadrupedal robot
/dog odom

/imu raw

B. Intrinsic Calibration

We utilize ROS Camera Calibration to camera in-
trinsic parameters. Fig. 3 represents the checkerboard for
camera calibration. Also, we apply pixel value inversion to
thermal images as described in Fig. 3 (b) and (c). Because

Fig. 3(a) Fig. 3(b) Fig. 3(c)

Fig. 3. Calibration Images. (a) Our calibration board (b) Normal 8-bit
thermal image (marker detection failure) (c) Inverted Thermal Image with
marker detection.
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Fig. 4. Reference trajectory of each sequence from the satellite map. From left to right, the LiDAR submap, sample images of RGB, thermal, and
pointcloud from the depth camera are shown.

the thermal values of the black and white pattern are opposed
to the original pixel values, we inverted the pixel values in
8-bit thermal images.

C. Extrinsic Calibration

It is essential to know the transformations between sensors
to utilize multiple sensor measurements. We first applied
marker-based LiDAR-camera calibration [9]. As described
in Fig. 3, the UV-printed checkerboard was used to capture
co-visible measurements from cameras and LiDAR. We
selected the nearest neighbor pairs to the LiDAR data for
RGB and thermal cameras and used the measurements in
the optimization process. For LiDAR-IMU calibration, we
utilized the robust real-time LiDAR-inertial initialization
method proposed in [10]. The projected LiDAR pointclouds
are represented in Fig. 5. The figure confirms the results of

Fig. 5(a) Fig. 5(b)

Fig. 5. Pointcloud projection images. (a) and (b) are images of LiDAR
points projected on the camera image and thermal camera image, respec-
tively. Since the resolution and size of the images of each camera are
different, we identify the different projected images.

extrinsic calibration.

IV. DATASET

All sequences are obtained within the outdoor sites on the
campus. Information and trajectory for each sample route can
be found in Fig. 4. Table III summarizes the names of our
datasets and brief descriptions, etc. A detailed description of
each sequence is as follows:

1) Hill: HILL sequences are environments composed of a
gravel road and tall grass on either side of the road.
Each sequence takes two laps around the same path.

• HILL01 is targeted mainly on the gravel road.
• HILL02 focuses on poor environments including

under-canopy.
2) Forest: FOREST is a terrain where trees are sporadi-

cally planted. People are frequently appearing in this
sequence. Also, the FOREST sequence is designed to
make a loop by driving around the same path twice.

3) Lawn: LAWN is obtained in a rectangular park with
hills scattered. In this sequence, the robot travels
around with the shape of an infinite symbol (∞) for
two laps using the stones in the center as a base point.

V. DISSCUSION & FUTURE WORKS

We proposed DiTer, a diverse terrain dataset leveraging
ground details. Our sequences contain various challenges
such as loss of data caused by tall grass. We utilize an
RGB-D camera as well as thermal, LiDAR, and IMU to
additionally interpret the robot’s state in rugged terrain. We
hope that our dataset support research targeting terrain where
the wheeled platform is difficult to traverse.



TABLE III
SUMMARY OF OUR DATASET

Number Sequence Name Terrain Description Length Duration

1 HILL01 Pebble Gravel Road 351m 790s

2 HILL02 Pebble and Lush vegetation Switching between the two environments 446m 1070s

3 FOREST Land with scattered trees Traverse in a square 350m 746s

4 LAWN Lawn with hills Drawing infinite symbol 501m 991s

In this paper, we also provide the reference trajectories
by applying the well-known LiDAR SLAM method (LIO-
SAM [11]). Because LiDAR-based mapping is also popular
research for autonomous construction robots, we plan to
evaluate various LiDAR-inertial SLAM approaches on our
datasets. Also, we will extend the dataset to include multi-
session measurements by capturing the sequences at night
time.
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