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Abstract—Recent developments in deep learning have 

enabled reinforcement learning (RL) methods to drive optimal 

policies for a sophisticated high-dimensional environment, 

which is suitable to overcome the challenges of implementing on-

site construction robots, such as the dynamic nature of the 

construction environment and inherent complexity to solve the 

multiple decision-makers interacting simultaneously. In this 

research, we are trying to propose a systematic framework to 

adopt deep reinforcement learning (DRL) algorithms into on-

site construction robotic applications (e.g., bricklaying 

platforms). This research has two main objectives: 1) Implement 

a multi-agent path-planning (MAPP) method for on-site robots 

that allow multiple mobile robots to navigate through the 

environment toward the assigned goal position and conduct the 

desired task logic while avoiding collisions, and 2) integrate the 

multi-agent task allocation (MATA) framework to solve 

complex tasks (e.g., laying bricks or delivering materials) 

through the cooperation of individual agents by assigning 

different tasks and roles to individual robots, which allows 

multiple robots to work simultaneously, just as how human 

workers act on a job site to make the best advantages of the 

productivity gains. 

I. INTRODUCTION 

Construction tasks involve interaction among multiple 
agents, where emergent behavior and complexity arise from 
agents co-evolving together. Construction workers are 
assigned different roles with a given set of tasks to 
accomplish. During this process, different teams work in the 
same environment. They either collaborate in reasonable 
sequences or compete for resources (e.g., space) to get the job 
done. When we implement multi-robot systems to finish a 
task, considerations must be made to path planning [1], 
resource allocation [2], sequence arrangement for operations 
[3], and scheduling among robots [4]. The working schemes 
of collaborative robots are essential to be investigated, which 
allow them to work in a group just as humans to boost 
productivity. However, most robot systems in the construction 
domain are developed with a single-agent setting [5]. Previous 
research has not investigated controlling robots 
simultaneously to finish a construction task with the same 
goal. This has been achieved in other areas for a long time, 
such as game simulation [6], collaborative manufacturing [7], 
network communication [3], warehouse delivery [8], etc. 
There is a lack of knowledge of the broad adoption of robotic 
components on construction sites. 

As an essential branch of machine learning, 
Reinforcement Learning (RL) can realize sequential decision-
making under uncertainties through end-to-end education and 
has made a series of significant breakthroughs in robot 
applications. With the development of deep learning, studies 
on Deep Reinforcement Learning (DRL) algorithms with 
robots have attracted researchers’ interest because of their 
ability to handle high-dimensional data [9] with stochastic 

dynamic reward functions [10]. It has led to a wide range of 
impressive progress in various domains, such as industrial 
manufacturing [7], robot control [11], autonomous driving 
[12], multi-agent task allocation (MATA) [13], and multi-
agent path-planning (MAPP) [14] problems. 

However, construction research has not investigated 
approaches combining MATA and MAPP problems using 
DRL. Previous research either looks into the stationary 
MATA problem to find the optimal policy for the job 
scheduling problem [15], or the navigation pathfinding 
methodology [16] using DRL algorithms, which is insufficient 
to adopt the DRL combined robots in the construction domain. 
This study proposes a systematic framework incorporating 
MATA and MAPP for a multi-agent construction robotic 
system. We are adapting the multi-agent proximal policy 
optimization (MAPPO) method for the MATA and MAPP to 
solve a construction bricklaying problem by giving different 
roles to the robots, such as bricklayer, material deliveryman, 
and inspector (e.g., to monitor progress and quality). Robots 
will follow a logic based on their roles, find the optimal 
schedule to start the navigation and do the pathfinding from 
initial points to execution areas. After reaching the goals, a 
predefined action will be conducted with a determined 
schedule. The final goal is to lay the bricks to specific points 
with the shortest timespan and shortest distances navigated 
during construction. 

II. RELATED WORK 

A. Multi-agent Task Allocation (MATA) 

Gradually, much research has started to investigate 
MATA. However, in the construction domain, it still needs to 
be explored. The MATA problem has been systematically 
defined in other areas, such as industrial manufacturing. Liu 
et al. [17] solved a planning problem with a multi-agent 
reinforcement learning (MARL) algorithm based on an 
options framework to handle a cooperative multi-robot system 
in an aircraft painting application. Agrawal et al. [18] 
suggested the RL method for multi-robot task allocation in 
warehouse environments. Recently a new framework by Lee 
et al. [19] proposed a digital twin-driven DRL for adaptive 
task allocation in robotic construction and tested it to assemble 
prefabricated concrete bricks using stationary robotic arms in 
a simulated environment. However, to make the robotic 
system more suitable for construction tasks and more capable 
of other roles on the construction site, the mobility of the 
construction robots must also be implemented. 

B. Multi-agent Path-Planning (MAPP) 

 The MAPP robotic problem has caused a lot of interest in 
different areas to handle dynamic environments. Shang et al. 
[20] developed a collaborative path planning of a carrier-
based aircraft to improve the scheduling efficiency on the 
aircraft carrier deck using MARL. Hu et al. [21] proposed an 
Automated Guided Vehicle (AGV) conflict prevention path 
planning method to enhance the container terminal’s 
transportation cost and operational efficiency. Long et al. [22] 
proposed an efficient multi-agent navigation in dynamic 
environments, which is of great industrial value when 
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deploying a large-scale fleet of robots to real-world 
applications. We could adopt these algorithms for the same 
use on the construction site to allow robots to navigate to the 
assigned position while avoiding collisions. 

C. MATA combined with MAPP 

As indicated in the previous section, using a DRL-based 
combination of MATA with MAPP is rare in the construction 
literature. However, it has been investigated in other domains. 
For example, various algorithms are proposed to solve the task 
allocation and path planning problem in warehouse delivery. 
Although these are used in controlled environments compared 
to construction sites, these algorithms could be transferable 
with modifications. For instance, Chen et al.[8] proposed a 
marginal-cost assignment heuristic improvement strategy 
based on Large Neighborhood Search, which allows the task 
assignment and path planning to be performed simultaneously 
in a warehouse package delivery system. Liu et al. [23] 
addressed the combination problem with a sequential two-
stage problem: (1) task assignment followed by (2) planning. 
The cost of the path planning task may be far higher than the 
task assignment solver anticipated. But they didn’t consider 
the uncertainty influence from the path planning to the task 
allocation part. Elfakharany and Ismail [24] introduced a 
method of decentralized sensor-level policy that performs 
multi-robot task allocation and navigation from end to end. 
However, it mostly considered the path planning part, which 
is not suitable for the dynamics task logic of a construction 
robot. 

III. METHODOLOGY 

A. Problem Identification 

We combine MATA and MAPP in a simulated 

environment to solve a construction bricklaying problem. 

The main elements of the methodology, related steps, and 

objectives are summarized in Table 1. 

Different roles are given to the robots, such as bricklayer, 

material deliveryman, and inspector. Thus, three robots are 

deployed in a collaborative setting with different locations to 

navigate and then do the execution. They will follow the basic 

task logic, such as finding the optimal schedule to start the 

navigation, considering the uncertainty of the path planning, 

and doing the pathfinding from initial points to the goal 

position. Robots are trained to understand their tasks and then 

navigate to the corresponding goal. After reaching the areas, 

a predefined action will be conducted with a determined 

schedule and motion trajectory. 

In this study, we are using DRL algorithms. The problem 

is formulated as a partially observable Markov decision 

process (POMDP). Each robot does a sequence of 

observations and actions, forming a trajectory from its start 

to the goal position chosen by the policy. The POMDP is 

episodic, and each episode ends either with one of the robots 

having a collision, all the robots successfully reaching the 

goals, or the maximum episode duration being exhausted. 

The goal is to finish the path-finding process and arrive at the 

waypoint on an optimal schedule to start the construction 

activities with the shortest time span and distances navigated. 

B. Simulator and communication network setup 

Training on such algorithms is often required. Testing the 

algorithm directly on a real robot is unrealistic. Thus, a 

simulator is needed to generate robot navigation and 

manipulator motions with quantitative evaluations and 

records. Middleware is required to communicate between the 

simulator and the environment that facilitates implementing 

a complex distributed application involving interacting 

components and logic. The most popular middleware used in 

robotics is the Robot Operating System (ROS). We use the 

ROS-embedded simulator software (Gazebo) to simulate the 

environment. Besides, we utilized a framework where a 

developer combines numerous ROS node sub-processes into 

an application package. In this study, ROS nodes with RL 

training algorithms were developed and linked with other 

ROS nodes to control the robots in the system architecture. 

These nodes and their interactions will help the robot feed 

forward the information from its sensors and wait for the 

feedback from the training scripts to understand the optimal 

policies in each step. 

C. MAPPO algorithm 

 We use the multi-agent proximal policy optimization 
(MAPPO) method for the MATA, and MAPP adapts it to 
complicated task allocation and path planning problems 
(Figure 1). While various forms of the policy gradient (PG) 
method exist, proximal policy optimization (PPO) has 
demonstrated comparable or better performance than recent 
PG approaches, and they are simpler to implement [25]. PPO 
enables multiple updates per minibatch sample to promote 
sample efficiency and guarantees policy optimization’s 
stability by limiting the policy’s update amplitude [26]. It 
ensures that the updated policy is not too different from the 
old one to ensure low training variance suitable for 
construction robot settings. 

 
Figure 1. MAPPO Training Algorithm. 

 We adopted the centralized learning, decentralized 
execution paradigm [27] in which each robot has a copy of the 
policy 𝜋𝜃  and the value 𝑉𝜑 networks. The policy and the value 

networks have different weights  𝜃  and 𝜑 . The algorithm 
(Figure 1) summarizes the data collection and training process. 

At each time step, each robot receives its observation 𝑂𝑖
𝑡  and 

uses its copy of the policy 𝜋𝜃  to generate the action 𝑎𝑖
𝑡. In the 

following step, the observations measure the distance between 
robots and goals, calculate the total and idle time in each 
action, and make 2D laser scanner measurements of the 
obstacles to rule out the collisions. The action space is just a 
1D vector representing the linear velocity of the robot heading 
towards the designed goals in each timestamp [𝑣𝑙

𝑡]. Then the 

MAPPO (Multi-Agent Proximal Policy Optimization) Training Algorithm. 

1. Initialize policy network 𝜋𝜃  old policy network 𝜋𝜃𝑜𝑙𝑑  and value network 𝑉𝜑  

2. for iteration = 1,2,...do 

3.   # Data collection 

4.   𝑇𝑡𝑜𝑡𝑎𝑙 ←  0 

5.   for episode = 1,2,... do 

6.     # Robots are running in parallel 

7.     for robot = 1,2,... N do 

8.       Run policy 𝜋𝜃  for 𝑇𝑖  time steps, collecting (𝑂𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑟𝑖
𝑡), where 𝑡 ∈ [0, 𝑇𝑖] 

9.       Calculate 𝐴𝑖
𝑡 =   𝛾𝜆 𝑡𝑇𝑖

𝑡=0   𝑟𝑖
𝑡  +  𝛾𝑉𝜑    𝑂𝑖

𝑡+1 −  𝑉𝜑    𝑂𝑖
𝑡   

10.       Returns 𝑅𝑖
𝑡  =  𝐴𝑖

𝑡  +  𝑉𝜑 (𝑂𝑖
𝑡)   

11.       𝑇𝑡𝑜𝑡𝑎𝑙 ←   𝑇𝑡𝑜𝑡𝑎𝑙 + 𝑇𝑖  

12.       Break if 𝑇𝑖  ≥ 𝑇𝑚𝑎𝑥  or a collision happens or each robot reaches a goal 

13.     end for 

14.     Break if 𝑇𝑡𝑜𝑡𝑎𝑙  ≥ 𝑇𝑡ℎN, and send the data rollout to train the centralized networks 

15.   end for 

 

16.   # Update policy and value 

17.   𝜃𝑜𝑙𝑑 ←  𝜃 

18.   for i=1,2... do 

19.     # Policy loss 

20.      𝑟𝑎𝑡𝑖𝑜 𝑡  =  
𝜋𝜃  𝑎𝑖

𝑡   𝑂𝑖
𝑡
 

𝜋𝜃𝑜𝑙𝑑  𝑎𝑖
𝑡   𝑂𝑖

𝑡
 
 

21.           𝐿𝑐𝑙𝑖𝑝  = ( 𝑚𝑖𝑛
𝑇𝑖
𝑡=0 (  𝑟𝑎𝑡𝑖𝑜 𝑡𝐴𝑖

𝑡  , 𝑐𝑙𝑖𝑝  𝑟𝑎𝑡𝑖𝑜 𝑡𝐴𝑖
𝑡  , 1−∈, 1+∈  )) /𝑇𝑡𝑜𝑡𝑎𝑙   

     

22.     # Value loss 

23.     𝐿𝑣  = (  𝑅𝑖
𝑡  −  𝑉𝜑 𝑂𝑖

𝑡  
2𝑇𝑖

𝑡=0 ) /𝑇𝑡𝑜𝑡𝑎𝑙   

 

24.     # Entropy loss 

25.         𝐿𝑒  = −(  𝑎𝑖
𝑡 𝑙𝑜𝑔  𝑎𝑖

𝑡  1𝑇𝑖
𝑡=0  /𝑇𝑡𝑜𝑡𝑎𝑙   

 

26.     #Total loss 

27.     𝐿 = −(𝐿𝑐𝑙𝑖𝑝 − 𝑐1𝐿𝑣 + 𝑐2𝐿𝑒)  

28.     Update 𝜃, 𝜑 with regard to 𝐿 

29.   end for  

30. end for 

 

Table 1. Research methodology, steps, and objectives 
Steps Objectives 

1. Simulator set up Address dynamic changes of the site. 

2. Communication 

network 

Allow different robot settings trained in the 

same framework.  

3. DRL & MARL 

algorithm 

Investigate RL algorithms for construction 

tasks.  

4. Integrated MATA 

and MAPP 

simulation 

Allow mobility of multi-agent robots. 

Allow task allocation and scheduling of 

multi-agent robots 

 



reward function 𝑟𝑖
𝑡 is calculated. Each robot collects its data 

 𝑂𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑟𝑖
𝑡  from the environment. Once the amount of data 

exceeds a certain threshold 𝑇𝑡ℎ, the rollouts of data are sent to 
a centralized copy of the policy and the value networks. Then, 
the gradients of the objective function L with respect to the 
centralized policy network weights 𝜃  and value network 
weights 𝜑 are computed. Then, the Adam optimizer updates 
the weights 𝜃 and 𝜑 using the learning rate 𝑙𝑟  for 𝐸 epochs. 
After each update, each robot receives a copy of the update 
weights 𝜃 and 𝜑 to start collecting a new batch of data. Thus, 
the policy and value networks are trained on the experiences 
collected by all the robots simultaneously. 

D. Reward function 

 Instead of precisely designing algorithms to manually 
calculate and build up an optimal solver, we focused on the 
reward function. Rather than defining each step for the robot 
to find the optimal solution, we defined the final goals and 
actions the robot could take in each step by using the DRL 
algorithms to train the robot to act towards the desired goals. 
In this specific problem of bricklaying robots, the reward 
function incentivizes each robot to understand the correct 
working logic and schedule, choose and move towards a 
unique goal position, and decrease the total idle time and the 
total distances with the shortest timespan and working 
distances. It penalizes getting near obstacles and colliding 
with them, multiple robots reaching the same goal position 
and consuming extended amounts of time to reach the goal. 
These are summarized as follows: 

 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡

= {−𝑏

𝑎, 𝑊ℎ𝑒𝑛 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑡𝑒𝑎𝑚 𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑎𝑠𝑘 𝑏𝑢𝑡 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

−𝑐, 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑐𝑜𝑢𝑙𝑑 𝑛𝑜𝑡 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑎𝑠𝑘 
 

 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡   is used to measure if the assignment of the task 

follows the task logic of the construction work.  

 𝑟𝑠
𝑖𝑑𝑙𝑒𝑡 𝑖

𝑡 = −𝑑𝑚𝑎𝑥   
𝑡𝑖𝑑𝑙𝑒

𝑡𝑡𝑜𝑡𝑎𝑙

− 𝑒 ,0  

 𝑟𝑠
𝑖𝑑𝑙𝑒𝑡 𝑖

𝑡 is used to calculate the percentage of the idle time, 
and give a certain penalty for delaying the total time. 

 𝑟𝑖
𝑡 = {

  𝑟ℎ 
𝑖

𝑡
 +  𝑟𝑜 𝑖

𝑡 +  𝑟𝑜𝑏 
𝑖

𝑡

𝑓,   𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑜𝑎𝑙 

−𝑔,   𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑎 𝑔𝑜𝑎𝑙 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑏𝑜𝑡 
−ℎ,   𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 

 

𝑟𝑖
𝑡  is the general reward function of path planning, where 

 𝑟ℎ 𝑖
𝑡  is a reward that increases in value when the robot is 

heading toward the goal,  𝑟𝑜 𝑖
𝑡 is the reward that penalizes the 

robot in case it is moving toward a goal position that another 

robot is moving towards,  𝑟𝑜𝑏 𝑖
𝑡   is the reward that penalizes 

the robot for getting near an obstacle. 

 𝑟𝑠
𝑑𝑖𝑠 𝑖

𝑡 = −𝑖max   
𝑑𝑖𝑠𝑖

𝑡

𝑑𝑖𝑠𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡

− 𝑗 ,0  

 𝑟𝑠
𝑑𝑖𝑠 𝑖

𝑡 is a reward function to measure how good the distance 
is compared to the shortest path between the initial points to 
the assigned goals. 

𝑅𝑖
𝑡 =  𝑟𝑠

𝑙𝑜𝑔𝑖𝑐
 𝑖
𝑡 +  𝑟𝑠

𝑖𝑑𝑙𝑒𝑡 𝑖
𝑡 + 𝑟𝑖

𝑡 +  𝑟𝑠
𝑑𝑖𝑠 𝑖

𝑡     

𝑅𝑖
𝑡 is used to measure the overall performance of the actions 

for robot 𝑖 at time step 𝑡 with 4 subparts’ reward on logic, time, 
and distances. In order to distinguish the effects of these 
subparts to clarify the goals (i.e., reward or penalty behavior), 
we define the values (i.e., weights) for 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, ℎ, 𝑖, 𝑗 to 
represent the reward/penalty received. For example, if we are 
concerned only with the least time to get the optimized 
schedule, we could give higher weights to the task logic and 
idle time and lower weights to long-distance traveling. This 

could help to train the algorithms with different settings under 
multiple circumstances. 

IV. RESULT AND CONCLUSION 

A. Results 

To test the proposed framework, we built a simulator in 

the ROS Gazebo (Figure 2) that allows robots with different 

roles to collaborate within the same environment. Three areas 

(execution area, material area, and monitor area) were 

defined, corresponding to different roles of activities 

performed by different robots (TutleBot 1-r1, TutleBot 2-r2, 

TutleBot 3-r3) in the simulator. Currently, the experiment is 

implemented as a proof of concept to verify the feasibility of 

combining path planning with the task allocation problem. It 

is hard for the robot to navigate randomly inside this model 

and find the optimal path without causing any collisions. 

Most of the trails will exit without even starting the task 

allocation part. Thus, we have simplified the problem to 

decrease the uncertainties of the path planning part to ensure 

the robot can arrive at the area in a specific time. The rigid 

body of the obstacles is removed in the current experiment 

and  𝑟𝑜𝑏 𝑖
𝑡  is ruled out to ensure the algorithm can run 

entirely in each trial. Besides, to simplify the navigation part, 

the robot will first change its orientation to the assigned goals 

from its starting point in each trial. Thus, this simple setting 

does not consider the penalty function of path planning 

𝑟𝑖
𝑡  and the shortest path reward function  𝑟𝑠

𝑑𝑖𝑠 𝑖
𝑡 . The only 

matter that causes the uncertainties from the path-planning 

process is caused by the random velocities assigned to the 

robot in each step. After several iterations, the robots will 

arrive at the goal areas without any problem. In future 

experiments,  𝑟𝑜𝑏 𝑖
𝑡 will be considered by using laser scanner 

data to address the static and dynamic obstacles.  

 
Figure 2. Simulator for combing MATA and MAPP in ROS Gazebo  

Figure 3 shows two measurements in this experiment, 

 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡  and  𝑟𝑠

𝑖𝑑𝑙𝑒𝑡 𝑖
𝑡  to evaluate the training result of the 

task schedule assignment and path planning. For the 

simplicity of showing the subparts’ performance, we are 

using a fixed seed to report the result. The numerical numbers 

come from the reward functions with different weights. The 

higher the cumulative reward (y-axis), the better the 

performance of the robots. Overall, the cumulative reward is 

stabilized after several episodes of training. 

Robot 3 (r3) performs well on the total idle time and 

task logic; the optimal policy is quickly gained, resulting in 

the reward converging fast, as shown in Figure 3. This is due 

to the independence of r3’s task of monitoring the other two 

robots. In the first 2,000 episodes, Robot 1 (r1) and Robot 2 

(r2) have some penalties on  𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡  attributed to the 

Turtlebot1

Turtlebot2

Turtlebot3

Material 

Area

Execution 

Area

Monitor 

Area



interaction of the two robots because of a misunderstanding 

of the orders causing the tasks to be performed following the 

wrong schedule. However, in the end, after around 5,000 

episodes, they find a way to generate the optimal policy to 

finish the task to gain the maximum reward. This means that, 

as expected, the goals are understandable and reachable after 

training. The falling of the yellow line  𝑟2 − 𝑙𝑜𝑔𝑖𝑐  is due to 

the collision between the material delivery (assigned to 𝑟2) 

with the assigned execution point generated for 𝑟1. This 

causes a penalty on the result of the task assignments. 

 

Figure 3. Training result of MAPPO on 3 robots 

B. Concluision and outlook 

In this study, we propose a multi-agent proximal policy 

optimization (MAPPO) method that combines MATA and 

MAPP problems for a collaborative construction robotic 

application. The training results show the feasibility of the 

proposed framework in a simple setting where the path 

planning functionalities are simplified. To solve problems in 

the construction domain, such as the bricklaying problem, 

still, this work has many limitations. For example, path 

planning with obstacles and moving objects should be 

considered. In this way, more than the current driving of 

robots from point to point is needed to address this challenge. 

The robot’s action should be modified, and it will take longer 

to find the optimal path. Second, the construction tasks 

should be modeled in the simulator with the pick-and-place 

function embedded. Third, more uncertainties need to be 

considered. Currently, the goal position is randomly 

generated inside the execution area, which is insufficient to 

handle this issue to mimic the actual construction. Besides, 

the roles of robots are now fixed; the switching roles of robots 

in different episodes should also be considered in a future 

implementation. Future work includes enriching the elements 

inside the simulator and the algorithm, and tests will be 

conducted in a simulated environment alongside real-world 

verification. 
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