
Behavioral Cloning via Search in Video PreTraining Latent Space

Federico Malato*
University of Eastern Finland

fmalato@uef.fi

Florian Leopold*
University of Bielefeld

fleopold@techfak.uni-bielefeld.de

Amogh Raut
Indian Institute of Technology BHU

Ville Hautamäki
University of Eastern Finland

Andrew Melnik
University of Bielefeld

Abstract

Our aim is to build autonomous agents that can solve
tasks in environments like Minecraft. To do so, we used
an imitation learning-based approach. We formulate our
control problem as a search problem over a dataset of
experts’ demonstrations, where the agent copies actions
from a similar demonstration trajectory of image-action
pairs. We perform a proximity search over the BASALT
MineRL-dataset in the latent representation of a Video
PreTraining model. The agent copies the actions from
the expert trajectory as long as the distance between the
state representations of the agent and the selected ex-
pert trajectory from the dataset do not diverge. Then
the proximity search is repeated. Our approach can
effectively recover meaningful demonstration trajecto-
ries and show human-like behavior of an agent in the
Minecraft environment.

Introduction
This study was motivated by the MineRL BASALT 2022
challenge [1]. In the challenge, an agent must solve the fol-
lowing tasks: find a cave, catch a pet, build a village house,
and make a waterfall [1]. The provided dataset of experts’
demonstrations contains trajectories of image-action pairs.
Additionally, both the MineRL BASALT dataset and envi-
ronments do not contain reward information. Therefore, our
primary focus was on Behavioural Cloning (BC) and Plan-
ning [2][3] methods to address the tasks, rather than deep
reinforcement learning (DRL) [4][5].

Methods
A dataset of expert demonstrations solving the following
tasks was provided [1]: find a cave, catch a pet, build a vil-
lage house, and make a waterfall. Each episode is a trajec-
tory of image-action pairs. No reward information is pro-
vided.

In our approach, we use experts’ demonstrations to re-
shape the control problem as a search problem over a latent
space of partial trajectories (called situations). Our work as-
sumes that:
• Similar situations require similar solutions or actions.
• A situation can be represented in a latent space.

* Equal contribution.

Figure 1: Similarity and divergence of five pairs of simu-
lator and dataset situation trajectories. Left column: cur-
rent frame from the MineRL environment. Middle col-
umn: current reference frame from the dataset trajectory that
the agent follows. Right column: L1-distance plot between
VPT embedding points of simulator and dataset situations.
The current step shown as RGB images in the Left and Mid-
dle columns is highlighted by the rightmost bold dot marker
in the Right column. X-axis indicates 256 time steps. Y-
axis indicates L1 distance between two embedding points
in the VPT latent space and ranges from 0.1 to 0.4. The de-
viation threshold is show by dashed red horizontal lines L1
= 0.35. Colored vertical lines mark new search events to find
the most similar situation in the dataset. Blue lines indicate
time-based initiated searches, red lines indicate deviation-
threshold based initiated searches. Gray dotted lines: every
64 steps in the X-axis and every 0.1 steps in the Y-axis.

• The situations latent space is a metric space. Therefore,
we can assess the numerical similarity between any two
situations.

Memory:
4 blocks x 128 [key, value]

Encoder CNN

4 Transformer Blocks with
129 embedding streams

1x1024

MLP with 8641-
dim output

(combinations of
keyboard actions)

Current image
128x128x3

1x1024

MLP with 121-
dim output

(11x11 clusters of
mouse actions)

probabilistic
prediction

probabilistic
prediction

one hot
encoded label

one hot
encoded label

loss loss

query, key, value = transformer_block_preprocessing(current_embedding)
memory_key.append(key) # memory of past 128 key vectors plus the current one
memory_value.append(value) # memory of past 128 value vectors plus the current one
transformer_block_output = transformer_block_compute(repeat(query, 129), memory_key, memory_value)
memory_key.pop() # delete the oldest entry
memory_value.pop() # delete the oldest entry
current_embedding = transformer_block_output[-1] # use for the next block only current frame embedding

re
si

du
al

 c
on

ne
ct

io
ns

Pseudocode: Transformer Blocks and interaction with Memory

current frame embedding

current frame embedding

Figure 2: VPT architecture.

Video PreTraining (VPT) model Our approach uses a
provided VPT model [6] for encoding a situation in a la-
tent space (see Figure 2). The model uses the IMPALA [7]
convolutional neural network (CNN) as backbone for the
encoding of individual images. The CNN network encodes
each image into a 1024-dimensional vector. The stack of 129
CNN outputs passes through four transformer blocks (see
Figure 2). Additionally to the current frame, a memory stack
stores the last 128 embeddings for each transformer block.
The output of the last transformer block are 129 embedding
vectors, each 1024-dimensional. The architecture discards
128 output embedding vectors of the last transformer block
and processes further only the current’s frame embedding
vector. Two MLP output heads take as an input the current’s
frame embedding vector to predict actions. The first output
head predicts a discrete action (one out of 8641 possible
combinations of compound keyboard actions). The second
output head predicts a computer mouse control as a discrete
cluster of one of the possible 121=11x11 mouse displace-
ment regions (±5 regions for X times ±5 regions for Y). The
architecture is shown in Figure 2.

Search-based BC Search-based behavioral cloning (BC)
aims to reproduce an expert’s behavior with high fidelity by
copying its solutions from past experience. We define a sit-
uation as a set {(oτ , aτ)}t+∆t

τ=t of consecutive observation-
action pairs coming from a set of provided expert’s trajecto-
ries, where ∆t is less or equal to the number of input slots
of a transformer block that processes embedding vectors of
input images.

We encode the expert’s past situations through a provided
VPT model [6]. Thus, we obtain a latent space populated by
N-dimensional situation points. Due to the expert’s optimal-
ity assumption, we can assume that each situation has been
addressed and solved in an optimal way.

VPT

Demonstration
Dataset

Dataset Images

Actions

VPT- Embeddings

Situations
Dataset

Observed Images VPT- Embeddings

Most similar
situation

L1 distance

MineRL
Environment

Situations
Dataset

VPT

Actions

Copy Actions

VPT- Embeddings

A

B

Figure 3: Our approach. (A) Training procedure. (B) Evalu-
ation loop.

We encode each sampled situation with the same net-
work. Then, we search the nearest embedding point in the
dataset of situation points. Once the reference situation has
been selected, we copy its corresponding actions. After each
time-step we update the current and reference situations, by
updating the queue of embedding vectors of images for the
current situation, while shifting to the next time-step in the
recorded trajectory from the dataset for the reference situa-
tion. To assess the similarity, we compute the L1 distance
between the current situation and the reference situation.
In most cases, the reference and the current situations will
evolve differently over time, thus, their L1 distance will di-
verge. Therefore, at each timestep we recompute the simi-
larity of the current and reference situations. A new search
is performed whenever either one of two conditions is met:
• The L1 distance between current and reference situations

overcomes a threshold (see red lines in Figure 1);
• The trajectory from the dataset has been followed for

more than 128 time-steps (see blue lines in Figure 1).
Choosing feature divergence as a criterion for controlling

search comes with a major advantage: whenever the copied
actions can not be performed (e.g. there are physical con-
straints that limit the agent movement space), the features
will diverge even faster. Thus, our agent will quickly per-
form a new search and address the faulty situation.

Our approach is illustrated in Figure 3. We refer to the
generation of the latent space as the ”training” procedure of
our agent. Rather, it is a preprocessing step needed to ensure
prior knowledge to our agent.

Experiments and Results
We applied our method to the MineRL BASALT Challenge
2022 [1], where it ranked top of the leaderboard at the end of
Round 1. The agent had to demonstrate human-like behav-
ior while completing the tasks. Our agent produces visually
human-resembling behaviour in the tasks.

In Table 1 we report quantitative measurements of the L1
distance before and after a new search for the best matching
trajectory from the dataset. In all four tasks, we found that
the average L1 distance after a search is much lower than
before it.

Environment Spike
Before

Spike
After

Window
Before

Window
After

FindCave .37 ± .02 .17 ± .02 .23 ± .05 .15 ± .03

VillageAnimalPen .37 ± .01 .16 ± .02 .22 ± .04 .15 ± .02

MakeWaterfall .37 ± .02 .16 ± .02 .22 ± .04 .15 ± .02

BuildVillageHouse .37 ± .02 .18 ± .03 .23 ± .04 .16 ± .02

Table 1: Average L1 distance value and its standard devi-
ation between current state and reference situation. Spike
denotes deviation based new search, Window denotes time
based new search. Values shown are right before and after a
new search.

A situation encapsulates both current and past informa-
tion. Therefore, at the very beginning of an episode, the sit-
uation embedding may be not informative. To mitigate this,
we allow the agent to warm up, by keeping it still for the
first second of a new episode. This way, the agent can gather
some images and produce a more informative representation
of the current situation. Using the warm up phase can be
vital whenever the agent faces a dangerous situation at the
beginning of an episode, e.g. when spawning close to a lava
pit.

Discussion & Conclusion
Here we presented our approach that represents the control
problem as a search problem over a latent space of par-
tial trajectories (called situations) from a dataset of experts’
demonstrations. Our approach can effectively recover mean-
ingful demonstration trajectories and show human-like be-
havior of an agent in the Minecraft environment. Possible
directions for improving the approach are methods of self-
supervised segmentation of important objects in first-person
views [8], multi-modal fusion of segmented representations
[9], modularization of control [10][11] and involvement of
working memory [12].

References
[1] R. Shah, C. Wild, S. H. Wang, N. Alex, B. Houghton,

W. H. Guss, S. P. Mohanty, A. Kanervisto, S. Milani,
N. Topin, P. Abbeel, S. Russell, and A. D. Dragan,
“The minerl BASALT competition on learning from
human feedback,” CoRR, vol. abs/2107.01969, 2021.

[2] S. Beohar and A. Melnik, “Planning with rl and
episodic-memory behavioral priors,” arXiv preprint
arXiv:2207.01845, 2022.

[3] S. Beohar, F. Heinrich, R. Kala, H. Ritter, and A. Mel-
nik, “Solving learn-to-race autonomous racing chal-
lenge by planning in latent space,” arXiv preprint
arXiv:2207.01275, 2022.

[4] N. Bach, A. Melnik, M. Schilling, T. Korthals, and
H. Ritter, “Learn to move through a combination of
policy gradient algorithms: Ddpg, d4pg, and td3,” in
International Conference on Machine Learning, Op-
timization, and Data Science, pp. 631–644, Springer,
2020.

[5] M. Schilling, A. Melnik, F. W. Ohl, H. J. Ritter,
and B. Hammer, “Decentralized control and local in-
formation for robust and adaptive decentralized deep
reinforcement learning,” Neural Networks, vol. 144,
pp. 699–725, 2021.

[6] B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga,
J. Tang, A. Ecoffet, B. Houghton, R. Sampedro, and
J. Clune, “Video pretraining (vpt): Learning to act
by watching unlabeled online videos,” arXiv preprint
arXiv:2206.11795, 2022.

[7] L. Espeholt, H. Soyer, R. Munos, K. Simonyan,
V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, S. Legg, and K. Kavukcuoglu, “IM-
PALA: scalable distributed deep-rl with impor-
tance weighted actor-learner architectures,” CoRR,
vol. abs/1802.01561, 2018.

[8] A. Melnik, A. Harter, C. Limberg, K. Rana,
N. Sünderhauf, and H. Ritter, “Critic guided segmenta-
tion of rewarding objects in first-person views,” in Ger-
man Conference on Artificial Intelligence (Künstliche
Intelligenz), pp. 338–348, Springer, 2021.

[9] T. Korthals, M. Hesse, J. Leitner, A. Melnik, and
U. Rückert, “Jointly trained variational autoencoder for
multi-modal sensor fusion,” in 2019 22th International
Conference on Information Fusion (FUSION), pp. 1–8,
IEEE, 2019.

[10] A. Melnik, S. Fleer, M. Schilling, and H. Ritter, “Mod-
ularization of end-to-end learning: Case study in ar-
cade games,” arXiv preprint arXiv:1901.09895, 2019.

[11] K. Konen, T. Korthals, A. Melnik, and M. Schilling,
“Biologically-inspired deep reinforcement learning of
modular control for a six-legged robot,” in 2019 IEEE
International Conference on Robotics and Automa-
tion Workshop on Learning Legged Locomotion Work-
shop,(ICRA) 2019, Montreal, CA, May 20-25, 2019,
2019.

[12] A. Melnik, F. Schüler, C. A. Rothkopf, and P. König,
“The world as an external memory: the price of sac-
cades in a sensorimotor task,” Frontiers in behavioral
neuroscience, vol. 12, p. 253, 2018.

	Introduction
	Methods
	Experiments and Results
	Discussion & Conclusion

