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Abstract— Fused deposition modeling (FDM) using mobile
robots instead of the gantry-based 3D printer enables additive
manufacturing at a larger scale with higher speed. This in-
troduces challenges including accurate localization, control of
the printhead, and design of a stable mobile manipulator with
low vibrations and proper degrees of freedom. We proposed
and developed a low-cost non-holonomic mobile 3D printing
system guided by a projector via learning-based visual servo-
ing. It requires almost no manual calibration of the system
parameters. Using a regular top-down projector without any
expensive external localization device for pose feedback, this
system enabled mobile robots to accurately follow pre-designed
millimeter-level printing trajectories with speed control. We
evaluate the system in terms of its trajectory accuracy and
printing quality compared with original 3D designs. We further
demonstrated the potential of this system using two such mobile
robots to collaboratively print a 3D object with dimensions of
80 cm × 30 cm size, which exceeds the limitation of common
desktop FDM 3D printers.

I. INTRODUCTION

Fused deposition modeling (FDM) is a common type of
additive manufacturing (AM) method. A conventional FDM
3D printer is typically implemented as a gantry system
enabling 3 degrees-of-freedom (DOFs) control of a print-
head to emit fused materials, ceramic, or even concrete
precisely to designed printing positions layer by layer. Such
a gantry-based printer cannot print house-scale objects. A
gantry system also makes it difficult for multiple printers
to collaborate to achieve a faster printing speed. To remove
these limitations, installing the printhead as the end-effector
of a mobile manipulator is an appealing option.

However, a mobile 3D printer brings several challenges
to the software and hardware design of such a robotic
system. First, we can no longer benefit from stepper motors
on the gantry to estimate the printhead position, which is
needed for the computer numerical control of the printer.
For a desktop FDM printer with a millimeter-level nozzle
diameter, the localization and control of the printhead must
achieve a millimeter or even sub-millimeter level to ensure
successful printing. Otherwise, the layer-by-layer mechanism
could easily fail before completing the printing.

In addition to the software challenge, the hardware design
of the robotic system is also non-trivial. Unlike regular mo-
bile manipulators, which are often used for object gripping
tasks, the aforementioned accuracy requirement means that
the mobile platform must have good stability during its
movement to minimize the vibration of the printhead. This
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Fig. 1. Collaborative printing of two mobile 3D printers in our system.

could lead to a trade-off with the convenience of the mobile
platform’s planning and control: should we use a holonomic
or a non-holonomic mobile robot?

To address these challenges, we propose and develop a
low-cost non-holonomic mobile 3D printing system. The
localization and control system is guided by a regular low-
cost top-down projector equipped with learning-based visual
servoing. The mobile platform is a non-holonomic two-wheel
differential drive robot with a camera for visual servoing.

II. RELATED WORK

Mobile 3D printing. The accuracy of traditional gantry-
based 3D printing relies on counting the steps of a stepper
motor’s output. For mobile 3D printing, the biggest chal-
lenge is how to localize a robot, because the accuracy and
reliability of the wheel encoder and Inertial measurement
unit (IMU) cannot provide satisfactory position feedback.
Therefore, some pioneers have explored different types of
localization methods for mobile 3D printing systems. [1]
proposed an omni-wheel 3D printing robot and a grid-
based 3D printing system. Their mobile robot scans a grid
on the ground through an optical sensor to perceive its
position when printing. [2] used a holonomic-based mobile
manipulator for mobile 3D concrete printing. They cut the
printing model into several parts and moved the mobile
platform to the target workspace for printing execution. Their
algorithm could obtain localized feedback and adjust the
motion error from the AprilTags [3] on the ground.

Holonomic vs. non-holonomic mobile platform. The
main differences between the above mobile 3D printing



Fig. 2. System settings and operation workflow. Left: projector-guided mobile 3D printing diagram. Right: training pipeline (green blocks) & printing
pipeline (blue blocks).
systems and ours are twofold. First, we use a non-holonomic
robot as our printing platform. According to previous printing
results [1], although omni-wheel-based holonomic robots can
be more convenient in terms of control and path planning,
they still cannot avoid shifting between printed layers caused
by a slip on the orthogonal direction of the robot motion.
Our differential drive robot uses standard wheels and does
not suffer from slippage in that direction. This also allows
odometry based on wheel encoders, which is more difficult in
omni-wheel robots. The second difference is the localization
system. Our system uses projector-based visual servoing
control, which requires no robot pose feedback in a Cartesian
frame, nor do we need any non-trivial manual calibration or
setup.

Visual servoing control. Position-based visual servoing
(PBVS) [4, 5] evaluates the error feedback from the observed
object in the 3D Cartesian space. This is called 3D visual
servoing. These types of methods require the camera intrinsic
parameters to convert all the observed object pose to a 3D
coordinate system. Therefore, the accuracy of the camera
calibration and the robot model will directly affect the control
output. In image-based visual servoing (IBVS) [6–8] control,
the robot will minimize the error directly in the image
space. This is also called 2D visual servoing. Because of
the estimation error in image space, these types methods are
insensitive to the calibration errors of the cameras on the
robot. The disadvantages of IBVS are lost feature points
during the rotation of the robot. The singularity of the
Jacobian matrix could also cause control failures.

III. SYSTEM DESIGN

As shown in Figure 2, our mobile 3D printing system
included a mobile platform, a top-down projector and a
flat printing surface. Our mobile platform was composed
of a TurtleBot and a robot arm with an FDM hotend
kit. The TurtleBot provided continuous movement, and the
robot arm helped the nozzle reach positions on the printing

surfaces. We used an entry-level projector, BenQ MS535A
SVGA, to project dynamic point pattern as the observation
reference on the printing surface.The mobile platform’s on-
board computer computed the printing trajectory and velocity
information from a projected image. The flat surface as a
projection screen provided a borderless build plate for the
entire mobile 3D printing system.

Our mobile platform was developed on Robotis TurtleBot3
burger. A 360◦ rotating robot arm was installed on the top
layer. The robot arm assembly consisted of two actuated
DoFs. The proximal DoF is a revolute joint whose rotation
axis is perpendicular to the top surface. The distal DoF is a
prismatic joint that is orthogonal to the proximal DoF.

Our control system is modified from TurtleBot3’s mecha-
tronic system architecture. As we previously mentioned, our
main control system consisted of OpenCR (driver board) and
Jetson Nano (SBC). OpenCR’s GPIO pins are used to control
the heating tube, cooling fan, and to send the signal output
to the extruder’s stepper motor. For the control software,
Robot Operating System (ROS) is used to communicate with
and synchronize the nodes and to handle all low-level device
control. On the right of Figure 2, we present our training and
printing workflow.

IV. VISUAL SERVOING

A. Learning-Based Visual Servoing (LBVS)

To use visual servoing to control the 2D movement of
our mobile base, we need to determine the interaction
matrix Le ∈ R2×2 between the control input vθ = [v, ω]T

(i.e., linear and angular velocities) and the image pixel
measurements u = [ux, uy]

T of a target feature point
such that u̇ = Levθ. To make our mobile robot system
easy to use and automatically deployable, unlike the classic
IBVS or 2.5D-VS methods [9, 10], we want to avoid any
intrinsic/extrinsic/hand-eye calibration of the camera, and
any feature point depth estimation. We achieved this using a



Fig. 3. Printing results of single robot printing: (a),(c),(e) fixed-arm printing; (b),(d),(f) rotation compensation printing; (e),(f) comparison of scanned
point cloud and ground truth.

machine-learning-base approach to find a dynamics model,
as described below. Thus, we call our method LBVS.

Utilizing the prior knowledge that a homography exists
between the ground plane and the camera plane, we model
the interactive matrix as a function of the pixel location,
i.e., Le(u) : R2 → R2×2. If this matrix function is given,
the control law of the mobile base is the same as in the
classic IBVS: vθ = −λL+

e e, where L+
e = (LT

e Le)
−1LT

e ,
e = u−u∗, and u∗ is the desired image location of a feature
point. Note that in a dynamic trajectory following case, e
is the optical flow of the feature point from the current to
the previous frame. Given M tracked feature points, e =
[eT1 , · · · , eTM ]T ∈ R2M×1 is the stacked error vector (i.e.,
the optical flow), and Le = [Le(u1)

T , · · · ,Le(uM )T ]T ∈
R2M×2 is the stacked image Jacobian evaluated at each fea-
ture point, and the resulting control vθ jointly regulates each
feature point’s error vector via the least squares principle.

The interaction matrix function Le(u) can be modeled as
a simple multi-layer perceptron (MLP), e.g., a ReLU MLP
(2-64-64-64-4) with three 64-dimensional hidden layers. The
challenge is determining how to estimate this MLP automati-
cally. Fortunately, we can take advantage of our projector and
the ground plane. During the automatic system calibration
stage, we can project a set of N random colored dots on
the ground such that these points cover enough area on the
image plane. We can control the mobile base with a sequence
of T frames of random velocity commands [v1

θ , · · · ,vT
θ ]

while recording the color dots’ image measurements at each
frame as [U0,U1, · · · ,UT ], where U t = [ut

1, · · · ,ut
N ].

Denoting the i-th point’s optical flow vector at frame t as
f t
i = ut+1

i − ut
i, we can train the MLP by minimizing the

L2 loss over this dataset as follows:

min
Le

1

T

∑
t

1

N

∑
i

||Le(u
t
i)v

t
θ − f t

i ||2. (1)

Our LBVS method has a desirable property in that it
is generally applicable to a wide range of camera lenses
(perspective or fisheye) and can be calibrated automatically.

V. EXPERIMENT

We design three experiments to verify the feasibility of
our mobile 3D printing system. We use our printing system
to print a hand-sized model, which could also be printed by
a traditional desktop 3D printer. The purpose of the second
experiment is to explore and optimize our printing system by
comparing with basic 3D printing models. We verified the
large-scale collaborative 3D printing in the final experiment.

Fig. 4. Simulation results of real velocity vs. target velocity.

Fig. 5. Large-scale collaborative printing results. Bottom circle images
show the connection points of two trajectories.

A. Trajectory and Control Accuracy

In this experiment, we designed a rectangular motion
trajectory. In Gazebo, the results showed that the LBVS
could control the mobile platform to complete the trajectory
well. In Figure 4, both the linear and angular velocities of
the mobile platform exhibited almost the same shapes as
the pattern’s speed. Meanwhile, as expected, there was a
small delay between them. The reason was that the mobile
platform needed to observe and process the point pattern
before reacting.

B. Single Robot Printing

We used a single mobile platform to print a cuboid model.
Based on the previous experiments, we learned that the rect-
angle corners were the most critical positions affecting the



TABLE I
WALL THICKNESS FOR REAL-WORLD EXPERIMENT

Wall Thickness (mm) GT Mean Maximum Minimum St.Dev

Without Constraints 2.00 3.72 4.92 2.33 0.40
With Constraints 3.02 4.17 2.74 0.24

printing results. To better handle four corners, we designed
two different corner printing methods. The first method fixed
the proximal joint position to −π/2 and completely relied
on extruder control. The other method used the robotic arm
to compensate for the rotation of the robot chassis. It kept
the end effector stationary when the mobile platform turned.
Additionally, we propose a new printing method that could
optimize our printing results. In this method, the mobile
platform prints front and back three times on every edge once
before it turns to the next edge. The models shown in Figure
3 were not completed all at once. Based on the previous
printing results, we adjusted the extruder control and replaced
the batteries for every 1-cm height. We measured the printed
wall thickness in Table I in comparison with the designed
thickness as ground truth (GT).

As Figure 3 shows, the model printed by the fixed robot
arm method significantly over-printed at the four corners.
When the mobile platform completed the turn, the end ef-
fector could not always reach the previous printing endpoint.
We found that the model surface printed by the rotation
compensation method was cleaner and smoother due to less
over-stacking at the model’s four corners.

C. Large-Scale Collaborative Printing

The purpose of the final experiment was to test our mobile
3D printing system, which could quickly set up multiple
printing platforms and complete large-scale printing. Here,
we used two mobile platforms to complete this experiment.
We designed an asymmetric contour, a sword, which is
shown in Figure 5. This sword model had a total length
of 0.80 m and a width of 0.30 m, and multiple corners that
need to be turned. Each mobile platform needed to print half
of the entire shape at the same time. The printing model had
stacked layers at the sword’s point and grip, as shown in the
Figure 5 circle. Furthermore, we printed directly on the laid
roller paper instead of the traditional 3D printing surface.

During the experiment, we found that most of the mobile
printing failures also occured with the desktop 3D printer.
The most common failure is model shrinkage. Our model
separated from the printing surface several times. To over-
come this problem, we overprinted at every corner except
the point of the sword. Avoiding collisions and control
interference are two other issues that require concern. In this
experiment, we manually designed the printing trajectory to
avoid the collision. We also change the color of the point
pattern to avoid mutual control interference.

VI. CONCLUSIONS

In this paper, we proposed a projector-guided non-
holonomic mobile 3D printing system. Compared with a
traditional 3D printer, we overcame the 3D printing size

limitation due to the build plate and gantry structure in
conventional 3D printing. Compared with prior works, our
method does not require any manual calibration or any world
coordinate for the mobile robot’s pose feedback. From the
experimental results, our LBVS worked effectively on the
non-holonomic mobile platform.
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